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Solvation and dielectric dispersion in optical electron transfer
Paul DELAHAY* and Andrew DZIEDZIC

Department of Chemistry, Mew York University, Mew York, New York 10003

(Received )

The effect of dielectric dispersion of the solvent on the energetics of

optical electron transfer is determined quantitatively by variations of the

free enerqgy of solvation of the species being photoionized. The solvation
free energy varies because the solvent polarizability in the/;ggg;;sphere

region of the photon absorbing species changes with photon enercy on account
i' cf dispersion. The solvation free energy is computed for a varying

polarizability of the solvent in the inner-sphere reaion and a fixed nuclear

configuration of the solvent=~ The-following interaction energies are
ébzé}&é};d: charge-induced dipole, dipole-induced dipole, induced

{ dipole-induced dipole, formation of induced dipoles, solute-solvent London

‘\gjgpersion, 5°]V§QE2391!f?t London dispersion, solute-sclvent and

solvent-solvent Born repu{;;;;%E‘The change of solvation free energy in
aqueous solution is computed in the 7 to 11 eV range from data on the
refractive index of water obtained by reflectance spectroscopy. The theory
accounts quantitatively for the effect of dispersion on photoelectron emission

by aqueous solutions of anions, cations and molecules. <

.-
———

I. INTRODUCTION
Photoionization of ions and molecules in agueous solutions cccurs at
photon energies (UV and vacuum UV) at which the optical dielectric constant

€op of the solvent differs from the limiting value in the visible range

egp (= 1.777 at 25°C) on account of dielectric dispersion. This chanae

h
from €2 to ¢ .
op op affects the water molecules in the inner-sphere 4

solvation shell of the species being photoionized. The free eneray of

hydration of the ion or molecule absorbing a rhoton is changec as a result of
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dispersion, as was recently pointed out,” and the free energv of

photoionization varies accordingly. This change of free energy was derived in

Pef. 1 by application of the Marcus theory of nonequilibrium polarization of a

continuous medium2

to the inner-sphere solvation shell. The resulting
equation was shown to account reasonably well for the effect of the variation

of € with photon energy on the photoelectron emission by aqueous solutions

p
of 17 different inorganic anions in the 7 to 10 eV range.

The Marcus theory2 is formulated in terms of the macroscopic concept of
polarization, and its application to the inner-sphere solvation shell is more
tentative than the usual justified application to outer-sphere reoraanizatiocn.
It seemed advisable therefore to develop a theory basea on a giscrete number ot
water molecules in the inner-sphere region. This is dcne in the present paper
on the basis of ideas developed in the treatment of ioric hydr-e1t1'c>n.3"S This
new approach is also more detailed than the one in Ref. 1 as it incluces
consideration of London dispersion eneraies and the interpretation of the
effect of dielectric dispersion on the photoionization of electrically neutral
mclecules. The new theory aarees very well with experiment,

IT. FREE ENERGY OF OPTICAL ELFCTRON TRANSFER WITH VARYING SOLVENT
POLARIZARILITY
A. Free energy of optical electron transfer as a function of solvent
polarizability

The treatment is divided into two parts. Firstly, it will be shown that
the free enerqy characterizing the optical electron transfer is related
directly to the free energy of solvation of the species being photoionized..
Secondly, this soivagion free energy will be computed for a varying
polarizability of the solvent and a fixed nuclear configuration of the

solvent. The aroument is developed for photoelectron emission by soluticns but

is of general validity for optical electron transfer.
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Consider the photoelectron emission into the vapor phase by an aqueous
solution of fons or molecules denoted by C. This process is characterizec by a.
free eneray of emission'AGm which will be related to the solvation free
energy of the species C. The chance of free energy between the initial and
fina) states of the emission process is obtained from the following sequence
where the symbols (ag) and (a) denote the liquid and gas phase, respectively:
C(aq) = C(a); C(a) = C*(g) + e (q); C+(g) = C'(aq). The free enercy of
emission AGm-‘is,6

86, = 1+ 26,(C") - a6 (C) + 7 + le]x , (1)

where I is the jonization potential of C(g); AGS(C*) and AGS(C) are free
energies of solvation; R (> 2) is the reorganization free eneray; e is the
electronic charge and x the surface potential of the solution.

Dielectric dispersion of the solvent affects the so]vatibn free eﬁergy

| AGS(C) of the photon absorbing species C(aq). The following model is adopted:

d The polarizability of the solvent molecules in the inner-sphere solvation
shell of the solvated solute C(aq) absorbing a photon of energy £ has the value
e, corresponding to the energy F. Conversely, the polarizability of solvent
molecules in the outer-sphere solvation region of the sclute is nct affected by
aBsorption of a photon by the solute. This polarizability retains the value
0

- a  corresponding to the limiting value cgp of the dielectric constant
3

cf the solvent in the visible range. The polarizability of the solvent

. molecules in both inner- and outer-sphere solvation regions of the species

produced by photoionization of C(aq) has its usual value 03. Hence, the

free eneray of solvaticn LGS(C+) and the total free energy R for inner- anc

d

outer-sphere reorganization are not affected by dispersion. This model is
reasonable since electron transfer also involves electronic recrganizaticn of

the solvent and these two processes cannot be separated sequentially.
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The change of AGm with the polarizability of the solvent therefore can be
calculated from Eq. (1) by retaining in the expression for AGS(C) only the
terms depending on this polarizability. Thus,

86, = A - Ulep.) - U(pp,) - U(pp,) - Uppp = U (Cow) = Uy (wyw) = Upgp, (2)
where A represents the sum of the terms of £a. (1) except -AGS(C), the
contributions to AGS(C) independent of the solvent polarizability and the
free energy for Born charging of the outer-sphere solvation region. The U's
in Eq. (2) are the energies for the following interactions and processes3’4:
U(epc) charge-induced dipole, U(ppa) dipole-induced dipole, U(papc)
1ndu£ed dipole-induced dipole, UIND formation of induced dipoles, UL(C,w)
solute-solvent London dispersion, UL(w,w) solvent-solvent London dispersion,

UPEP solute-solvent and solvent-solvent Born repulsicn. The quadrupole-induced

dipole interaction enerqgy is not included in Eq. (2) since it is negligible (ca.

0.01 ev).

Explicit forms of the energies in Eq. (2) are as fol]ows3'4:

Ulep_) = - Nzepa/rg, (3)
Ulpp,) = 2bpp°/r§ (4)
u(p.p,) = bpslrg. (5)
Urpp = prl?cw. (€)
UL(Cyw) = = (3M/2)[TT /(1 + 1 )Jaa /75, (7)
U (wow) = = eI a2/r8, (e)

Urgp = B - (1/x{2u(ep,) + 3[U(pp,) *+ \(p.p,)]
+ 6[U (C,w) + U (w,w) ]} (9)
Motations are: N the number of water molecules in the inner-sphere hydration
shell; z the absolute value of the ionic valence of species C(aq); p the dipole

moment of the solvent; Py the induced dipole moment; and o the sum of the
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crystallographic radii re of C(aa) and (= 1.32 R) of the water rolecule on

w
the assumption that the center of the induced dipole is at the distance retr
from the charge; I and Iw the ifonization energies of C(g) and the solvent,
respectively, and a and e, the corresponding polarizabilities; b a structure
factor equal to 2.296 for tetrahedral coordination of water molecules in the
inner-sphere shell and b = 7.114 for octahedral coordination; ¢ the product of
the numerical constant 3/4 (from Eq. (7) for I = Iw) and a structure
parameter, namely ¢ = 1.722 and ¢ = 5.336, respectively, for tetrahedral or
octahedral coordination of water molecules in the inner-sphere shell (values
of b and ¢ in Ref. 3 and calculations in Ref. 4).

The Born repulsion energy UREP of Eq. (9) is obtainea3'4 by minimizing
with respect to "o the sum of all the interaction energies involving the
ionic charge, dipoles, iqduced dipoles, London dispersion. The term B in Eq.
(9) represents the contribution independent of the solvent polarizability.
The exponent x is such that UREP is proporticnal to r;x. The exponent
x varies with the nature of the species involved over a range7 from 5 for He

to 12 for Xe, Il Values of x from € to 10 applied to the cations studied

in Ref. 3 and 4,

The induced dipole Po is obtained3’4 by minimizing with respect to
p, the sum of the energies of Eqs. (3) to (6). Thus,

P, = aw(nzero - 2bp)/(Nrg + 2b°w)’ : (1c)
The second term in the denominator is rather small (10 to 20 percent) in
comparison with the first term, and Po is nearly proportional to a, .

The change of the free energy cf emissicn 8C, with the solvent

-

polarizability can now be calculated from Eqs. (2) to (10). Results are 1
displayed in Fig. 1 in which,

88€, = 4G, (a,) - 86, (ad), (11) L

o PO ' - s *
P TSR T - . A o o J P O




Faplit asier s PRS- T P — S 0 WP — ——
T PSR ANt M At Mactals Mt S et e P SL A b e 4 P T — L — SRS —— o Pl
e e S - L .. B - . R N

is the difference between the free energies of emission for the polarizability

'2d_cm3). The quantity

a, and the limfting value 03 (= 1.444 x 10
AAGF varies almost linearly with ay in Fig. 1, especially for z = 1. This
is the case because a6 of Eq. (2) can be written as
86, = K, + Kqa,, * Kpoa, + Kzal, (12)
if one takes Pe proportional to a,s is nearly the case (discussion of
Eq. (10)). The K's in Eq. (12) are independent of a and a, and the term
Kl“w is dominant for z ¢ 0. Figure 1 shows that the effect of dispersion
of the solvent on 86, is significant for emission by aqueous solutions of
ions and is far from negligible for solutions of molecules.
The calculation leading to Fia. 1 (x = 9) was repeated for the exponent x
of Ea. (9) equal to 6 and 12. For instance, one calculates for a, = 2.5 x
1072 s 4G, = 0.064 and 0.116 eV for z = 0 and x = 6 and 12,
" respectively; a6, = 0.138 and 0.271 eV for z = 1 and x = 6 and 12,
irespectively. The quantity AAGm varies significantly with x because of the
form of Eq. (9) for the Born repulsion energy UREP‘
B. Free eneragy of optical electron transfer as a function of photon eneray
The relationship between polarizability and cptical dielectric constart is
needed for the analysis of experimental results on emission in Sec. IV. The
polarizability ay of 1iquid water is relatecd to its refractive index at the
photon energy E by the Lorenz-Lorentz equation,8
(n? - 1)/(n” + 2) = (4a/3)N g, | (13)
where the number Nw of water molecules per unit volume is given by kw =
GNA/M (¢ the density of water, FA Avogadro's number and M the molecular

weight of water). It should be stressed that Eq. (13) allows the calculation

2

of e, from n® without correction for the difference between the actual

internal field and the Lorentz field. The correction for this difference

—y
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appears in the relationship between the polgrization and the field as shown in
the Appendix. FEquation (13) is valid for transparent and absorbing media, but-
the relationshp between n and the optical dielectric constant €op is not the
same: Cop = n2 for transparent media; € = n2 - k2 and € = 2nk
for absorbing media (k absorption coefficient; ] and 2 real and
imaginary parts of €op respectively).

The change of free enerqgy AAGm can now be computed as a function of
photon energy E from Egs. (2) to (11) and experimental data on n in Eq. (13).

9

The values of n were used which were recently recalculated by Painter” from

the reflectance spectroscopy data in Ref. 10 and 11. The resulting plots for

z = 0 and 1 resemble the plotl0

of the real part of the dielectric con;tant
against E. The ascending seaments of the curves of Fig. 2 essentially
correspond to normal dispersion of water and the descending segments to
anomalous dispersion resulting frem the two absorption bands of water with
raxima at ca. 8,7 and 10.0 eV. The effect of dispersion on the energetics of
optical electron transfer is significant since AGm(aw) is higher than the
limiting value AGm(az) by as much as ca. 0.3 eV. The shape ¢f the curves in
Fig. 2 is quite independent of the radius o and is not affected significantly by
the value of the exponent x in Eq. (9) and by the ionic valence z.
ITT. DISPERSICON SPECTRA FOR OPTICAL ELECTRCN TRAMSFER

The effect of dielectric dispersion is investigated experimentally by
measuring the yield Y for photoelectron emissicn by aqueous solutions as a
function of photon energy E.1 The yield (number of collected electrons per
incident photon) is properticnal to (E - Ft)s (s = 2 or §/2), where Ey is

the threshold energy of the species in solution. Cne has By = 26, to 2

good approximation,® and consequently dYl/S;de is proportional to 1 - daC_/dE,

P - L I L " L L . - ‘l




that is, to 1 - dAAGm/dE, where dAAGm/dE varies with E because c¢f dielectric

dispersion. A dispersion spectrum is obtained1 by plotting lelS/dE against E.

In the absence cf dielectric dispersion, dispersion spectra would have the
shape of a step function to a first abproximation: Y = G and le/sldE =0
for £ < E; dY}/S/dE is constant (4 0) for £ > E,. Such a simple
dispersion spectrum can be expected in the ranae of photon energies in which
the change of free energy AAGm of €q. (11) dces not vary much with photon
energy, namely for F > 10 eV (Fig. 2). The dispersion spectrum of water (Sec.
IVC) is a cood example of such a simple spectrum without major distorticn from
dispersion. Actually, the emission law is more involved than the simple
rroporticnality of Y to (F - Et)s in the vicinity cf the threshcld energy,
and there is a progressive rise of lelzldE with E over a few tenths of
electronvolt beyond the threshold energy. This increase is not related te
dispersion, and dispersion spectra therefore are examined in general at phcton
enegies higher than the threshold energy by a few tenths of electronvolt.

Since lels/dE is proportional tc 1 - dAGm/dE, that is, to 1 - dAAGm/dE,
the gquantity -dAAGm/dE was calculated as a function of the photon eneroy E
for z=0 and 1 (Fig. 3). Differentiation was performed by means of
Savitsky-Colay convolutes as discussed in Pef, 1. The variaticns cf the
polarizability a of the solute with photon energy were not considered. The
ccrresponding term (Eq. (7)) is small and the shape of the theoretical curve is
hardly affected by variation of a. No correction of the curves of Fig. 3 was
necessary for attenuation of the photon flux resulting from absorption in the
layer of liquid from which photoelectrons are emitted. Such a correction is
negligible for the absorption coefficient of liquid v:aterg"11 (E < 11 eV)
within the thermalization 1ength13 of low-energy auasifree electrons (2C to

40 R).
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1V. COMPARISON OF THEORY AND EXPERIMENTAL DISPERSION SPECTRA
A. Anions

Theory and experiment will be compared for the dispersion spectra of anions
reported in Ref. 1 and for new spectra of different species. This comparison
is made in Fig. 4 (curve A) for azide ion (Ettz 7.4 eV) which has a
dispersion spectrum typical of inorganic anions. The curves A and C in Fig. 4
have the same general shape except that the maximum at 2.62 eV and minimum at
9.08 eV in the experimental spectrum A are much more pronounced than in the
theoretical spectrum C. However, réf]ectance spectral analysis is particularly
difficult in these regions because of the rapid variations of reflectance with
photon energy and the resulting sensitivity of the relative peak heights to the
smoothing and interpolation procedures. The photon energies.af the extrema of
the theoretical curve of Fig. 3 for z = 1 nevertheless agree very well with the
corresponding average experimental photon energies for the 17 inorganic anions
studied in Pef. 1 (Table I) with a mean deviation of only 0.06 eV. This is
essentially the mean accuracy (0.04 eV) with which the extrema were located for
all anions.

Agreement with theory is aiso achieved for ferrocyanide icn (Et = €,2 eV
and 6.8 eV) which yields a dispersion spectrum (Fig. 4, curve B) similar to
those of other inorganic anions. The ion is quite bulky (rc = 4.5 A) and the
number N of water molecules in the first solvation shell certainly exceed the
value N = 6 assumed in the construction of Fig. 3. Mcreover, z = 4 (or 2
depending on the ionic equilibria in solution) and consequently the dispersion
effect should be enhanced in comparison to the case of N = f and z = 1. This
enhancement, however, is compensated by the higher radius re ® 4.5 X than the
value re ® 2.01% prevailing approximately for usual incrganic anions. The
effect of dispersion for ferrocyanide ion therefore is similar in maaonitude to

the effect observed for uni- and divalent anions.1

- Py CRry W W P Py oy i ey E R S
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B. Cations
Results for cations are limited because emission by anions (C17)

interferes above ca. 8.6 eV and most cations have threshold energies above 7

el

eV. The dispersion spectra for V2+ (Et = €£.8 eV) and Cr2+ (Et = 7.0

T
. . ‘. PR P

eV) in Fig. 5 (curves A and B) are remarkably similar and exhibit the same

features as the theoretical curve. The magnitude of the dispersion effect for
these cations is comparable to the effect observed with anions (z = 1 or 2)
having crystallographic radii Te of the order of 2 A although the radii of
v2* (0.82 ) and Crl* (0.84 ) are much shorter than for anions.
Complexation with chloride probably accounts for the magnitude of the
dispersion effct since the crystallographic radius of species such as ver®
and crc1’ s comparable to that of anions.
C. Molecules

Water (Et = 10.0420.02 evla) has a dispersion spectrum (Fig. 6) which
very approximately resembles the step function expected in the absence of
dispersion for an emission yield proportional to (F - Et)llz (Sec. III).

This is the case because —dAAGmIdE does not vary markedly with photon energy
1/2

in the 10.3 to 11 eV range (Fig. 3). Excellent plots of Y against photen
energy are indeed obtained14 for water as one expects for a free energy AGm R
nearly independent of £ in the range covered by such plots. The spectrum of | 1

Fig. 6 exhibits the usual maximum near 9.82 eV (Table 1) below the extrapolated

-

threshold energy in a range of photon energies in which the emission yield is

very lew. The maxima at 10.33 and 10.69 eV and the minimum at 10.55 eV

predicted by theory (Fia. 3) are indeed observed (Table I). .
The dispersion spectra of aqueous sclutions of organic molecules are alsc . R

accounted for by the present theory. Results are shown in Fig. 7 for aniline

(Ft % 7.3 eV, curve A), hydroquinone {Et « 7.1 eV, curve P) and phenol




o

+

1—

11

(Et % 7.6 eV, curve C). These substances exhibit (< 11 eV) two ionization

bands in the gas phase. The second threshold energies in solution are ca. 8.5,
2.0 and 8.3 eV on the assumption that the energy difference between the two

bands in the same for the gas phasels‘16

and solution.

The second transition tand accounts fof the difference between the
experimental (curves A, B, C) and theoretical (curve D) spectra in Fig. 7.
Thus, lelzldE for aniline (curve A) increases in the 8.5 to 8.95 eV range
because of the second transition. A maximum is reached at 8.95 eV because the
dispersion effect becomes dominant, and the expected minimum at 9.08 eV (Table
1) is observed. The same interpretation applies to hydroquinone (curve B).
The derivative dY]IZIdE increases above the second thresheld encrgy {ca2. 6.0
eV), but dispersion already shows up in the maxima near 8.17 and §.66 eV (Table
7). The minimum near 9.08 eV expected from dispersion is well defined. Phenol
(curve C) displays the increase of dY1/2/dE beyond the second threshold
energy (Et % 8.3 eV) expected from the second transition, but dispersion soon
becomes dominant as shown by the maximum near 8.66 eV (Table I) and the rather
sharp drop to the usual maximum near 9.08 eV. The three spectra of Fig. 7, it
is concluded, do not present any unusual feature not accounted for by the
present theory once the complication arising from two consecutive transitions
is recognized.

CONCLUSICN ]

The effect of dielectric dispersion of the solvent on the energetics of
optical electron transfer is understood quantitatively in its essential
aspects, and the theory thus developed agrees with experiment. The study of

the dispersion effect provides a unique way of investigating experimentally the

change of solvation free energy resulting from variation of the polarizability

of the solvent at constant nuclear configuration of the solvation shell.

e S e e e
‘A a A [-.. Aaa 4 _ak I

i

-

-

>, 4




12

T

ACKNOWLEDGMENT
This work was supported by the Office of Naval Research anc the National

Science Foundation. Professor L. R, Painter (Physics, University of Tennessee)

g - Resae

kindly communicated unpublished results on the reflectance spectroscopy of

;: water.
r APPENDIX
{_ The molar polarization with correction for the difference between the
‘l Lorentz and internal fields is®
[(n? = 1)1(n? + 2)](M/6) = (4%/3)Nya 6, (14)

where the notations are the same as in Eq. (13) and the correction function is
€ = 9e /(02 + 2)[(20% + 1) - (a,/2°) (207 - 2)], (15)
the radius a being such that a3 = (3/41)M/NA6. Solving Egs. (14) and (15)
for @, one obtains
a, = (3/4n)(1/N)(n% - 1)(2n? + 1)/[9n? + (a? - 1)(2n? - 2)]. (16)
The denomindtor is equal to (n2 + 2)(2n2 + 1), and the resulting value of

a, is that given by the Lorenz-Lorentz equation of Eq. (13).

REFFRENCES
1
2
3

P. Delahay and A. Dziedzic, J. Chem. Phys., in press.

P. A. Marcus, J. Chem, Phys, %ﬂ» 979 (1956).

W. E. Morf and W. Simon, Helv. Chim, Acta 54, 794 (1971).

”w. F. Morf, Retrag zur theoretischen Erfassurg der Alkali- und

Erdalkaliionenselektivitdt von Tragerantibiotika und Modellverbindungen,

dissertation, ETH, Zurich, 1972, pp. 23-50.

5B. E. Conway, Jonic Hydration in Chemistry and Biophysics (Elsevier,

3 Amsterdam, 1981), pp. 312-341.

-~ PO



13
8. Delahay, Acc. Chem. Res. 15, 40 (1982).
7L. Paulina, The Nature of the Chemical Bond, 3rd ed. (Cornell University

Press, Ithaca, 1960), p. 509.

8C. J. F. Bottcher, Theory of Electric Polarisaticn (Elsevier, Amsterdam,

1952), pp. 199-212, 238-253.

9L. R. Painter, private communicaticn.

10, M. meller, Jr., R. N. Hamm, R. D. Birkhoff and L. R. Painter, J. Chem.
Phys. 60, 3483 (1974).

113, M. Heller, Jr., R. D. Birkhoff and L. R. Painter, J. Chem. Phys. €7,
1858 (1977).

1?The plots of -dAAGmIdE acainst £ computed from the original n-vaiues in
Ref. 10 for 2z = 0 and 1 were similar to the curves of Fig. 3 except that the
raxima at 8.6 and 5.30 eV were hardly noticeable. Agreement with

exper imental dispersion spectra was less satisfactory than for Fig. 3.

13F. Neff, J. K. Sass, H. J. Lewerenz and H. Ibach, J. Phys. Chem. 84, 1135
(1980).

1%p. Delahay and K. von Burq, Chem. Phys. Lett. 83, 250 (1581).

[ 4
l'K. kirura, S. Katsumata, Y. Achiba, T. Yamazaki and S. Iwata, Handbook of

Hel Photoelectron Spectra of Fundamental Orcanic Molecules (Halsted Press, few

York, 1981), pp. 190, 191,

1€1. Kobayashi and S. Nagakura, Bull. Chem. Soc. Japan 47, 25€3 (1074).




14
TABLE I. Photon energies at the extrema of dispersion spectra: theorj vS.

experimental results

Extremum Theorya Experimentb

h (eV) (ev)
[ min 7.45 7.58 (C.02)
: rax .17 £.1€ (0.C¢€)
i max 8.6€ 8.65 (0.02)
1 min 9.08 a.11 (0.03)

max 9.30 Q.27 (0,0F)
ﬁ min 9.40 9.63 (0.02)

max 9.88 9.86 (C.04)

rax 10.33 10.35

min 10,55 10.50

max 10.€9 10.6¢

2photon energies from Fig. 3 (2 = 1). Maximum at 8.6€ eV definitely indicated
by the numerical values of -dAAGm/dE calculated at 0.01 eV intervals,

bValues below 10 eV are average photon energies for 17 inorgaric anions from
Fef. 1; standard deviation between parentheses. Values above 10 eV for water

(Sec. IVC and Fig. €).
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Fig. 1. Variations of the change of free energy 846G, of Eq. (11) with the -

polarizability , of the solvent for z = 0 and 1. Data: e = 2k NaE,

-24

p = 1.834 debye,” a = 3 x 1072 cn®, I = d eV, I = 12.6 eV, x = 9.

Fig. 2. Variations of the change of free erergy as6, of Ec. (11) with

photon energy for z = 0 and 1. . Values of AAGm for the values of a,

‘I computed from Eq. (13) for the data on the refractive index n of water fror 4*1
A Painter.? S
hi Fig. 3. Variations of -dAAGm/dE with photon energy E fer z = ¢ and 1. Same

data as for Fig. 1. Photon energies indicated at the extrema of the curve for

Zz =1 are also valid for z = 0.

Fig. 4, Dispersion spectra of 1 M sodium azide (A) and 0.05 M potassium

ferrocyanide (B) in aqueous solution compared with the variaticns of

-dsaG,/dE with photon energy (C) of Fig. 3 for z = 1,

Fig. §. Dispersion spectra of 0.5 M VCI? (A) and 1 M CrC1? (B) in aguecus

solution compared with the variations of -dAAGm/dE with photon energy (C) of

1

1

]

Fig. 6. Dispersion spectrum of water. B

I

1

Fia. 7. Dispersion spectra of 0.01 M aniline (A), 0.05 M hydroquinone (B) and f
C.1 M phenol (C) in aqueous solution compared with the variations of

—

-dAAGmIdE with photon energy (D) of Fiq. 3 for z = O.
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